Course Number and Name

BCS002 - NEURAL NETWORKS

Course Objectives

- Basic neuron models: McCulloch-Pitts model and the generalized one, distance or similarity based neuron model, radial basis function model, etc.
- Basic neural network models: multilayer perceptron, distance or similarity based neural networks, associative memory and self-organizing feature map, radial basis function based multilayer perceptron, neural network decision trees, etc.

Prerequisites	Co-requisites
BMA101- Mathematics-I,	NIL
BMA201-Mathematics-II,	
BMA402- Numerical Methods	

Course Outcomes (COs)

CO1: Be able to analyze a problem for NN solution in terms of these methods.

CO2: Have an awareness of the computational theory underlying NN.

CO3: Have a working knowledge of a typical neural network simulation

CO4: Experience in programming NN applications from scratch.

CO5: Have knowledge of sufficient theoretical background to be able to reason about the

behavior of neural networks.

CO6: Have knowledge of sufficient theoretical background to be able to reason about the behavior of neural networks.

Student Outcomes (SOs) from Criterion 3 covered by this Course

COs/SOs	а	b	С	d	е	f	g	h	i	j	k	
CO1	М	Н		Н								
CO2		Н		Н								
CO3	М	Н		Н								
CO4		Н	Н	Н								
CO5	L	Н		Н		М						
CO6												